LECTURE 13

INFORMATION THEORY

Information Theory was created by C. E. Shannon in the late
40’s. The management of Bell Telephone Labs wanted him to call
it "Communication Theory" as that is a far more accurate name,
but for obvious publicity reasons "Information Theory" has a much
greater impact - this Shannon chose and so it is known to this
day. The title suggests that the theory deals with information -
and therefore it must be important since we are entering more and
more deeply into the information age. Hence I shall go through a
few main results, not with rigorous proofs of complete
generality, but rather intuitive proofs of special cases, so that
you will understand what information theory is and what it can
and cannot do for you.

A

First, what is "information"? Shannon identified informa-
tion with surprise. He chose the negative of the log of the
probability of an event as the amount of information you get when
the event of probability p happens. For example, if I tell you
it is smoggy in Los Angles then p is near 1 and that is not much
information, but if I tell you that it is raining in Monterey in
June then that is surprising and represents more information.
Because log 1 = 0 the certain event contains no information.

In more detail, Shannon believed that the measure of the
amount of information should be a continuous function of the
probability p of the event, and for independent events it should
be additive - that what you learn from each independent event
when added together should be the amount you learn from the com-
bined event. As an example, the outcome of the roll of a die and
the toss of a coin are generally regarded as independent events.
In mathematical symbols, if I(p) is the amount of information you
have for event of probability p, then for event x of probability
p, and for the independent event y of probability p,, you will
get for the event of both x and y

I(p1pPy) = I(pq) + I(P3) (x and y independent events)
This is the Cauchy functional equation, true for all p; and p,.
To solve this functional equation suppose
Py = Py =P
then this gives
I(p?) = 2I(p)

If p; = p2 and p, = p, then



I(p3) = 3I(p)

etc. Extending this process you can show, via the standard
method used for exponents, that for all rational numbers m/n

I(p™/") = (m/n)I(p)

From the assumed continuity, of the information measure it follows
that the log is the only continuous solution to the Cauchy func-
tional equation.

In information theory it is customary to take the base of
the log system as 2, so that a binary choice is exactly 1 bit of
information. Hence information is measured by the formula

I(p) = - log, p = log,(1/p).

Let us pause and examine what has happened so far. First,
we have not defined "information", we merely gave a -formula for
measuring the amount. Second, the measure depends on surprise,
and while it does match, to a reasonable degree, the situation
with machines, say the telephone system, radio, television, com-
puters, and such, it simply does not represent the normal human
attitude towards information. Third, it is a relative measure,
it depends on the state of your knowledge. If you are looking at
a stream of "random numbers" from a random source then you think
that each number comes as a surprise, but if you know the formula
for computing the "random numbers" then the next number contains
no surprise at all, hence contains no information! Thus, while
the definition Shannon made for information is appropriate in
many respects for machines, it does not seem to fit the human use
of the word. This is the reason it should have been called
"Communication Theory", and not "Information Theory". It is too
late to undo the definition (which produced so much of its ini-
tial popularity, and still makes people think that it handles
"information") so we have to live with it, but you should clearly
realize how much it distorts the common view of information and
deals with something else, which Shannon took to be surprise.

This is a point that needs to be examined whenever any
definition is offered. How far does the proposed definition, for
example Shannon’s definition of information, agree with the
original concepts you had, and how far does it differ? Almost no
definition is exactly congruent with your earlier intuitive con-
cept, but in the long run it is the definition that determines
the meaning of the concept - hence the formalization of something
via sharp definitions always produces some distortion.

Given an alphabet of g symbols with probabilities p; then
the average amount of information, (the expected value), 1in the
system is

H(P) = SUM[i=1,q; p;I(pj] = SUM[i=1,q: pjlogl/p;)]

This is called the entropy of the system with the probability
distribution {pi}- The name "entropy" is used because the same
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mathematical form arises in thermodynamics and in statistical
mechanics, and hence the word "entropy" gives an aura of impor-
tance that is not justified in the long run. The same mathemati-
cal form does not imply the same interpretation of the symbols!
The entropy of a probability distribution plays a central
role in coding theory. One of the important results is Gibbs’

inequality for two different probability distributions, p; and
gj. We have to prove

SUM([p; log{qgij/pPj}] £ O
The proof rests on the obvious picture, Figure 13-1, that
log x < x -1, (0 £ X < ™),

and equality occurs only at x = 1. Apply the inequality to each
term in the sum on the left hand side

SUM[p;{g;/pP; - 1}] = SUM[q;] - SUM[p;] =1 -1=0
If there are q symbols in the signaling system then picking
the q; = 1/q we get from Gibbs’ inequality, by transposing the g
terns,
H(P) < log g
This says that in a probability distribution if all the g symbols
are of equal probability, 1/q, then the maximum entropy is ex-
actly 1n g, otherwise the inequality holds.
Given a uniquely decodable code we have the Kraft inequality
K = suM[1/2ti] < 1
Now if we now define the pseudo probabilities
= »—1:
Q; = 27Ti/K

where of course SUM[Q;] = 1, it follows from the Gibbs’ in-
equality,

sUM[i=1,q; p; log(l/(Kpj2ti}] < 0

after some algebra (remember that K < 1 so we can drop the log
term and perhaps strengthen the inequality further),

H(p) £ log K + SUM[pjl;] < L = average code length

Thus the entropy is a lower bound for any encoding, symbol to
symbol, for the average code length L. This 1s the noiseless

coding theorem of Shannon.

We now turn to the main theorem on the bounds on signaling
systems that use encoding of a bit stream of independent bits and
go symbol to symbol in the presence of noise, meaning that there
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is a probability that a bit of information is correct, P > 1/2,
and the corresponding probability @ = 1 - P that it is altered
when it is transmitted. For convenience assume that the errors
are independent and are the same for each bit sent, which is
called "white noise".

We will encode a long stream of n bits into one encoded mes-
sage, the n-th extension of a one bit code, where the n is to be
determined as the theory progresses. We regard the message of n
bits as a point in an n-dimensional space. Since we have an n-th
extension, for simplicity we will assume that each message has
the same probability of occurring, and we will assume that there
are M messages, (M also to be determined later), hence the prob-
ability of each initial message is

1/M

, We next examine the idea of the channel capacity. Without
going into details the channel capacity is defined as.the maximum
amount of information that can be sent through the channel
reliably, maximized over all possible encodings, hence there is
no argument that more information can be sent reliably than the
channel capacity permits. It can be proved that for the binary
symmetric channel (which we are using) the capacity C, per bit
sent, is given by

C=1-H(P) =1 - H(Q)

where, as before, P is the probability of no error in any bit
sent. For the n independent bits sent we will have the channel
capacity

nC = n{l - H(P)}
If we are to be near channel capacity then we must send al-

most that amount of information for each of the symbols aj;j, i =
l, ... , M, and all of probability 1/M, and we must have

I(ai) = n{C - e}

when we send any one of the M equally likely messages aj- We
have, therefore

M = zn(c - ei) = an/znel

With n bits we expect to have nQ errors. In practice we
will have, for a given message of n bits sent, approximately.nQ
errors in the received message. For large n the relative

spread, (spread = width, .variance) of the distribution of the
number of errors will be increasingly narrow as n increases.

From the sender’s~poinf of view I take the message a; to be
sent and draw a sphere about it of radius

r = (Q + es)n (e > 0, Q + e, < 1/2)



which is slightly larger by e, than the expected number of er-
rors, Q, Figure 13-2. If n is large enough then there is an ar-
bitrarily small probability of there occurring a received message
point bs; that falls outside this sphere. Sketching the situation
as seeg by me, the sender, we have along any radii from the
chosen signal, aj, to the received message, bs;, with the prob-
ability of an error is (almost) a normal distrgbution, peaking up
at nQ, and with any given e, there is an n so large that the
probability of the received point, bj, falling outside my sphere
is as small as you please.

Now looking at it from your end, Figure 13-3, as the
receiver, there is a sphere S(r) of the same radius r about the
received point, bs:, in the space, such that if the received mes-
sage, bj, 1is iné&de my sphere then the original message aj; sent
by me is inside your sphere.

How can an error arise? An error can occur according to the
following table:

case a; in s(r) another in S(r) meaning

1 yes yes error
2 yes no no error
3 no yes error
4 no no error

Here we see that if there is at least one other original message
point in the sphere about your received point then it is an error
since you cannot decide which one it is. The sent message is
correct only if the sent point is in the sphere and there is no
other code point in it.

We have, therefore, the mathematical equation for a prob-
ability pgp of an error, if the message sent is aj,

Pp = P{aj not in s(r)} + P{aj is in S(r)}
xP{at least one more ay is in S(r)}

We can drop the first factor in the second term by setting it
equal to 1, thus making an inequality

Prp < P{a; not in S(r)})} + P{at least one more aj is in S(r))
But using the obvious fact that
P(E; and/or E,) = P{E;} + P(E;} ~ P(E;E;)
hence
P(E, and/or E,} < P{Eq} + P(E,y)
applied repeatedly to the last term on the right
Pp < P{a; not in S(r)} + SUM[all a:; except ai;P{aj in S(xr)}]
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By making n large enough the first term can be made as small
as we please, say less than some number d. We have, therefore,

Pp < d + SUM[P(ay in S(r)}]

We now examine how we can make the code book for the encod-
ing of the M messages, each of n bits. Not knowing how to en-
code, error correcting codes not having been invented as yet,
Shannon chose a random encoding. Toss a penny for each bit of
the n bits of a message in the code book, and repeat for all M
messages. There are nM tosses hence

oM

poss&ble code books, all books being of the same probability
1/2%".  Of course the random process of making the code book
means that there is a chance that there will be duplicates, and
that there may be code points that are close to each other and
hence will be a source of probable errors. What we have to prove
is that this does not occur with a probability above any positive
small level of error you care to pick - provided n is made large
enough.

The decisive step is that Shannon averaged over all possible

code books to find the average error! We will use the symbol
Av[.] to mean average over the set of  all possible random code
books. Averaging over the constant d of course gives the con-
stant, and we have, since for the average each term is the same
as any other term in the sum,

AV[(Pp} < d + (M—l)Av[P{aj in S(r)}]
which can be increased, (M-1 goes to M),

Av[Pgp] £ d + M SUM[for all ay not aj; P{a; in S(r)}]

For any particular message, when we average over all code
books, the encoding runs through all possible values, hence the
average probability that a point is in the sphere is the ratio of
the volume of the sphere to the total volume of the space. The
volume of the sphere is

1 +¢C(n,1) + ¢(n,2) + ... + C(n,ns)
where s = Q + e, < 1/2, and ns is supposed to be an integer.

The largest term in this sum is the last (on the right). Wwe
first estimate the size of it, via Stirling’s formula for the
factorials. We then look at the rate of fall off to the next
term before it, note that this rate increases as we go to the
left, and hence we can: (1) dominate the sum by a ceometric
progression with this initial rate, then (2) extend the geometric
progression from ns terms to an infinite number, (3) sum the
geometric progression (all standard algebra of no great
importance) and we finally get (4) the bound (for n large enough)

6




1 + C(n,1) + C(n,2) + ... + c(n,ns) < 2NH(S) (s < 1/2)
Note how the entropy H(s) has appeared in a binomial identity.

We have now to assemble the parts, note that the Taylor
series expansion of H(s) = H(Q + ej) gives a bound when you take
only the first derivative term and. neglect all others, to get the
final expression

Av[Pg] < d + 270(& = &3)

where
e3 = ey In{(1 - Q)/Q} (Q < 1/2)
All we have to do now is pick an e, so that e, and the
last term will get as small as you please with suff1c1en%ly large

n. Hence the average error of Pp can be made as small as you
please while still being as close to channel capacity C as you
please.

If the average over all codes has a suitably small error,
then at least one code must be suitable - hence there exists at
least one suitable encoding system. This is Shannon’s important
result, the "n01sy coding theorem", though let it be noted that
he proved it in much greater generallty than the simple blnary
symmetric channel I used. The mathematics is more difficult in
the general case, but the ideas are not so much different, hence
the very particular case used suffices to show you the true na-
ture of the theorem.

Let us critique the result. Again and again we said, "For
sufficiently large n." How large is this n? Very, very large
indeed if you want to be both close to channel capacity and
reasonably sure you are right! So large, in fact, that you would
probably have to wait a very long time to accumulate a message of
that many bits before encoding it, let alone the size of the ran-
dom code books (which being random cannot be represented in a
significantly shorter form than the complete listing of all Mn
bits, both n and M being very large).

Error correcting codes escape this waiting for a very long
message and then encoding it via a very large encoding book,
along with the corresponding large decoding book, because they
avoid code books and adopt regular (computable) methods. In the
simple theory they tend to lose the ability to come very near to
the channel capacity and still keep an arbitrarily low error rate
but when a large number of errors are corrected by the code they
can do well. Put into other words, if you provide a capacity for
some level of error correction then for efficiency you must use
this ability most of the time or else you are wasting capacity,
and this implies a high number of errors corrected in each mes-
sage sent.

But the theorem is not useless! It does show, in so far as

7



it is relevant, that efficient encoding schemes must have very
elaborate encodings of very long strings of bits of information.
We see this accomplished in the satellites that passed the outer
Planets; they corrected more and more errors per block as they
got farther and farther from both the Earth and the Sun (which
for some satellites supplied the solar power of about 5 watts at
most, others used atomic power sources of about the same power).
They had to use high error correcting codes to be effective,
given the low power of the source, their small dish size, the
limited size of the receiving dishes on Earth as seen from their
position in space, and the enormous distances that the signal had
to travel.

We return to the n-dimensional space which we used in the
proof. In the discussion of n-dimensional space we showed that
almost all the volume of a sphere lay near the outer surface -
thus for the very slightly (relatively) enlarged sphere about the
received signal it is almost certain that the original sent sig-
nal lies in it. Thus the error correction of an arbitrarily
large number of errors, nQ, with arbitrarily close to no errors
after decoding is not surprising. What is more surprising is
that the M spheres can be packed with almost no overlap - again
an overlap as small as you please. Insight as to why this is
possible comes from a closer examination of the channel capacity
than we have gone into, but you saw for the Hamming error cor-
recting codes that the spheres had no overlap. The many almost
orthogonal directions in n-dimensional space indicates why we can
pack the M sphere into the space with little overlap. By allow-
ing a slight, arbitrarily small amount, of overlap which can lead
to only a very few errors in your decoding you can get this dense
packing. Hamming guaranteed a certain level; Shannon only a
probably small error but as close to the channel capacity as you
wish, which Hamming codes do not do.

Information theory does not tell you much about how to
design, but it does point the way towards efficient designs. It
is a wvaluable tool for engineering communication system between
machine~like things, but as noted before it is not really
relevant to human communication of information. The extent to
which biological inheritance, for example, is machine-like, and
hence you can apply information theory to the genes, and to what
extent it is not and hence the application is irrelevant, is
simply not known at present. So we have to try, and the success
will show the machine-like character, while the failure will
point towards the fact that other aspects of information are im-
portant.

We now abstract what we have learned. We have seen that all
initial definitions, to a larger or smaller extent, should get
the essence of our prior beliefs, but they always have some
degree of distortion and hence non-applicability to things as we
thought they were. It is traditional to accept, in the long run,
that the definition we use actually defines the thing defined;
but of course it only tells us how to handle things, and in no
way actually tells us any meaning. The postulational approach,
so strongly favored in mathematical circles, leaves much to be
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desired in practice.

, We will now take up an example where a definition still
bothers us, namely IQ. It is as circular as you could wish. A
test is made up that is supposed to measure "intelligence", it is
revised to make it as consistent internally as we can, and then
it is declared, when calibrated by a simple method, to measure
"intelligence" which is now normally distributed (via the
calibration curve). All definitions should be inspected, not
only when first proposed, but much later when you see how they
are going to enter into the conclusions drawn. To what extent
were the definitions framed as they were to get the desired
result? How often were the definitions framed under one condi-
tion and are now being applied under quite different conditions?
All too often these are true! And it will probably be more and
more true as we go farther and farther into the softer sciences,
which is inevitable during your life time.

Thus one purpose of this presentation of information theory,
besides its usefulness, is to sensitize you to this danger, or if
you prefer, how to use it to get what you want! It has long been
recognized that the initial definitions determine what you find,
much more than most people care to believe. The initial defini-
tions need your careful attention in any new situation, and they
are worth reviewing in fields in which you have long worked so
you can understand the extent that the results are a tautology
and not real results at all.

There is the famous story by Eddington about some people who
went fishing in the sea with a net. Upon examining the size of
the fish they had caught they decided that there was a minimum
size to the fish in the sea! Their conclusion arose from the
tool used and not from reality.
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